Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C7⋊C8

Direct product G=N×Q with N=C2 and Q=C22×C7⋊C8
dρLabelID
C23×C7⋊C8448C2^3xC7:C8448,1233


Non-split extensions G=N.Q with N=C2 and Q=C22×C7⋊C8
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C7⋊C8) = C2×C4×C7⋊C8central extension (φ=1)448C2.1(C2^2xC7:C8)448,454
C2.2(C22×C7⋊C8) = C22×C7⋊C16central extension (φ=1)448C2.2(C2^2xC7:C8)448,630
C2.3(C22×C7⋊C8) = C2×C28⋊C8central stem extension (φ=1)448C2.3(C2^2xC7:C8)448,457
C2.4(C22×C7⋊C8) = C42.6Dic7central stem extension (φ=1)224C2.4(C2^2xC7:C8)448,459
C2.5(C22×C7⋊C8) = D4×C7⋊C8central stem extension (φ=1)224C2.5(C2^2xC7:C8)448,544
C2.6(C22×C7⋊C8) = Q8×C7⋊C8central stem extension (φ=1)448C2.6(C2^2xC7:C8)448,557
C2.7(C22×C7⋊C8) = C2×C28.C8central stem extension (φ=1)224C2.7(C2^2xC7:C8)448,631
C2.8(C22×C7⋊C8) = C56.70C23central stem extension (φ=1)2244C2.8(C2^2xC7:C8)448,674
C2.9(C22×C7⋊C8) = C2×C28.55D4central stem extension (φ=1)224C2.9(C2^2xC7:C8)448,740

׿
×
𝔽